Efficient verification of network fault tolerance via counterexample-guided refinement

Nick Giannarakis 1 Ryan Beckett 2 Ratul Mahajan 34 David Walker 1

¹Princeton University ³University of Washington

²Microsoft Research ⁴Intentionet

Network misconfigurations

Southwest Airlines unions want CEO out over technology outage

Aug 2, 2016 🔍 0

Facebook, Instagram and WhatsApp taken down for 14 hours by suspected BGP leak from European ISP

Longest downtime in Facebook's history caused by BGP leak, according to Netscout

Microsoft: Misconfigured Network Device Caused Azure Outage

Google goes down after major BGP mishap routes traffic through China

Google says it doesn't believe leak was malicious despite suspicious appearances.

iCloud goes down: Apple joins the Google, Facebook, Cloudflare cloud outage club

What's going on? It's cloud outage month, and there's nothing users can do about it.

Facebook, Instagram, WhatsApp suffer global outage

Services are back online for most, but some still have problems

March 14, 2019 By: Peter Judge | Will Calvert

Configuration challenges

- (1) *Complexity*. Configurations are overly complex.
- (2) Changing environment. Peers send new routes.
- (3) Failures. Exponential number of behaviors to check.

Configuration challenges

✓ *Complexity*. Configurations are overly complex.

- ✓ *Changing environment*. Peers send arbitrary routes.
- ✓ *Failures*. Exponential number of behaviors to check.

MineSweeper [Beckett 2017] SMT based verifier.

Configuration challenges

- ✓ *Complexity*. Configurations are overly complex.
- ✓ *Changing environment*. Peers send arbitrary routes.
- ✓ *Failures*. Exponential number of behaviors to check.
- X Scale. Millions of configuration lines on thousands of devices.

Network compression: Bonsai [Beckett et al., 2018]

- Exploit topology/policy *symmetries*.
- Concrete nodes route "in the same way" as their abstraction.

Network compression: Bonsai [Beckett et al., 2018]

- Exploit topology/policy *symmetries*.
- Concrete nodes route "in the same way" as their abstraction.
- But: does not preserve fault tolerance properties!

Is compression possible in the presence of failures?

Is compression possible in the presence of failures?

Yes! In this talk:

- A network compression theory compatible with failures.
- Origami, a tool that combines graph algorithms and SMT reasoning to compress a network and verify reachability properties in the presence of link failures.

Network Compression Theory

Topological symmetries: $\forall \exists$ -abstraction

Concrete and abstract networks have similar connectivity.Example:

blue abstract node has an edge to pink abstract node iff **all** blue concrete nodes have an edge to **some** pink concrete node.

Topological symmetries: $\forall \exists$ -abstraction

Concrete and abstract networks have similar connectivity.Example:

blue abstract node has an edge to pink abstract node iff **all** blue concrete nodes have an edge to **some** pink concrete node.

Topological symmetries: $\forall \exists$ -abstraction

Concrete and abstract networks have similar connectivity.
Example:

blue abstract node has an edge to pink abstract node iff **all** blue concrete nodes have an edge to **some** pink concrete node.

Challenges with link failures I

Concrete pink nodes have 2 disjoint paths, their abstraction has only 1.

Challenges with link failures II

a₁ no longer has similar routing behavior with a₂, a₃ and a₄.
â does not capture both behaviors.

Plausible abstractions

Plausible abstractions

Plausible abstraction: Nodes have two disjoint paths!

A necessary (but not sufficient) condition for 1-fault tolerance.

Approximating concrete networks

If a node has a route to the destination with k failures then it has a route that is at least as good with k' failures (k' < k).

- Abstract network over-approximates link failures.
- Approximation is key to achieving compression.

Label approximation theorem

Given a network and its effective abstraction f, for any solution $(\mathcal{L}, \mathcal{F})$ of the concrete network there exists a solution $(\widehat{\mathcal{L}}, \widehat{\mathcal{F}})$ of the abstract network, such that $\mathcal{L}(u) \preceq \widehat{\mathcal{L}}(f(u))$.

Holds for networks whose policy is *monotonic* and *isotonic*.

- Monotonic: route $\prec f(\text{route})$
- $\textbf{isotonic: route}_1 \prec \text{route}_2 \Rightarrow f(\text{route}_1) \prec f(\text{route}_2)$
- Reachability in abstraction implies reachability in the concrete.

Abstraction Algorithm

pink nodes do not announce routes to blue nodes.

(1) Can blue and pink nodes reach the destination when there is 1 link failure?

- (1) Can blue and pink nodes reach the destination when there is 1 link failure?
- (2) Start from the smallest abstraction.

- (1) Can blue and pink nodes reach the destination when there is 1 link failure?
- (2) Start from the smallest abstraction.
- (3) REFINE to obtain a plausible abstraction: |mincut(Graph,blue)| > 1 and |mincut(Graph,pink)| > 1.

- (1) Can blue and pink nodes reach the destination when there is 1 link failure?
- (2) Start from the smallest abstraction.
- (3) REFINE to obtain a plausible abstraction: |mincut(Graph,blue)| > 1 and |mincut(Graph,pink)| > 1.
- (4) Run the verification procedure.
 - blue node cannot reach the destination!

Spurious counterexample \Rightarrow refine the abstraction.

No progress!

Learned that pink nodes do not send routes to blue nodes.
Start over, REFINE until |mincut(Graph-disabled,blue)| > 1.

Verifies reachability under any single link failure.

Carries over to the concrete network by soundness theorem!

The **REFINE** procedure

Goal: Compute a plausible abstraction.

The **REFINE** procedure

Goal: Compute a plausible abstraction.

- Split abstract nodes, but:
 - (1) Which nodes to split?

- **Goal:** Compute a plausible abstraction.
- Split abstract nodes, but:
 - (1) Which nodes to split?

- **Goal:** Compute a plausible abstraction.
- Split abstract nodes, but:
 - (1) Which nodes to split?
 - (2) How to split them?

Goal: Compute a plausible abstraction.

- Split abstract nodes, but:
 - (1) Which nodes to split?
 - (2) *How* to split them?
 - (3) Must remain a valid $\forall \exists$ -abstraction.

- **Goal:** Compute a plausible abstraction.
- Split abstract nodes, but:
 - (1) Which nodes to split?
 - (2) How to split them?
 - (3) Must remain a valid $\forall \exists$ -abstraction.
 - (4) Need to make the right splitting choices.

- Computing the smallest plausible abstraction seems difficult!
- Instead: Explore many plausible abstractions.
- Guide the search by a set of heuristics.
- Pick the smallest abstraction found.

Evaluation

Торо	V/E	# Failed	Abs V/E	Abstraction Time	SMT Time
FT20	500/8000	1	9/20	0.1	0.1
		3	40/192	1.0	7.6
		5	96/720	2.5	248
FT40	2000/64000	1	12/28	0.1	0.1
		3	45/220	33	12.3
		5	109/880	762.3	184.1

- Evaulated on synthetic datacenter topologies.
- Often reduced edges by more than 100x.
- Abstraction time is insignificant.
- SMT verification is possible.

Торо	V/E	# Failed	Abs V/E	Abstraction Time	SMT Time
FT20	500/8000	1	9/20	0.1	0.1
		3	40/192	1.0	7.6
		5	96/720	2.5	248
FT40	2000/64000	1	12/28	0.1	0.1
		3	45/220	33	12.3
		5	109/880	762.3	184.1

- Evaulated on synthetic datacenter topologies.
- Often reduced edges by more than 100x.
- Abstraction time is insignificant.
- SMT verification is possible.

Торо	V/E	# Failed	Abs V/E	Abstraction Time	SMT Time
FT20	500/8000	1	9/20	0.1	0.1
		3	40/192	1.0	7.6
		5	96/720	2.5	248
FT40	2000/64000	1	12/28	0.1	0.1
		3	45/220	33	12.3
		5	109/880	762.3	184.1

- Evaulated on synthetic datacenter topologies.
- Often reduced edges by more than 100x.
- Abstraction time is insignificant.
- SMT verification is possible.

Торо	V/E	# Failed	Abs V/E	Abstraction Time	SMT Time
FT20	500/8000	1	9/20	0.1	0.1
		3	40/192	1.0	7.6
		5	96/720	2.5	248
FT40	2000/64000	1	12/28	0.1	0.1
		3	45/220	33	12.3
		5	109/880	762.3	184.1

- Evaulated on synthetic datacenter topologies.
- Often reduced edges by more than 100x.
- Abstraction time is insignificant.
- SMT verification is possible.

Heuristics effectiveness

FT20 (500/8000), 5 link failures

Random searches will not achieve high compression.
Heuristics make (costly) mistakes.

We enable verification of fault tolerance of large networks:

- Based on a new theory of network compression.
- Origami a tool that can handle networks out of reach to current state-of-the-art tools.
- Geared towards reachability only.
- Some properties are not preserved by approximation.

Thank you!