
Efficient verification of network fault tolerance
via counterexample-guided refinement

Nick Giannarakis 1 Ryan Beckett 2 Ratul Mahajan 34 David Walker 1

1Princeton University 2Microsoft Research
3University of Washington 4Intentionet

Network misconfigurations

1 / 21

Configuration challenges

(1) Complexity. Configurations are overly complex.
(2) Changing environment. Peers send new routes.
(3) Failures. Exponential number of behaviors to check.

2 / 21

Configuration challenges

3 Complexity. Configurations are overly complex.
3 Changing environment. Peers send arbitrary routes.
3 Failures. Exponential number of behaviors to check.

7 Scale. Millions of configuration lines on thousands of devices.

MineSweeper [Beckett 2017]
SMT based verifier.

2 / 21

Configuration challenges

3 Complexity. Configurations are overly complex.
3 Changing environment. Peers send arbitrary routes.
3 Failures. Exponential number of behaviors to check.
7 Scale. Millions of configuration lines on thousands of devices.

MineSweeper [Beckett 2017]
SMT based verifier.

network size

time

2 / 21

Network compression: Bonsai [Beckett et al., 2018]

⇒
𝑑

Concrete Network

𝑑

Abstract Network

Exploit topology/policy symmetries.
Concrete nodes route “in the same way” as their abstraction.

But: does not preserve fault tolerance properties!

3 / 21

Network compression: Bonsai [Beckett et al., 2018]

⇒
𝑑

Concrete Network

failed
𝑑

Abstract Network

Exploit topology/policy symmetries.
Concrete nodes route “in the same way” as their abstraction.
But: does not preserve fault tolerance properties!

3 / 21

Our contribution

Is compression possible in the presence of failures?

4 / 21

Our contribution

Is compression possible in the presence of failures?

Yes! In this talk:
A network compression theory compatible with failures.
Origami, a tool that combines graph algorithms and SMT
reasoning to compress a network and verify reachability
properties in the presence of link failures.

4 / 21

Network Compression Theory

The routing problem

𝑑

initial route

𝑏2𝑏1 𝑏3

𝑎

Formal model: Stable paths [Griffin et al., 2002], routing algebras [Sobrinho, 2005].

5 / 21

The routing problem

𝑑

initial route

𝑏2𝑏1 𝑏3

𝑎

Formal model: Stable paths [Griffin et al., 2002], routing algebras [Sobrinho, 2005].

5 / 21

The routing problem

𝑑

initial route

𝑏2𝑏1 𝑏3

𝑎

Formal model: Stable paths [Griffin et al., 2002], routing algebras [Sobrinho, 2005].

5 / 21

The routing problem

𝑑

initial route

𝑏2𝑏1 𝑏3

𝑎

Formal model: Stable paths [Griffin et al., 2002], routing algebras [Sobrinho, 2005].

5 / 21

The routing problem

𝑑

initial route

𝑏2𝑏1 𝑏3

𝑎

fail
ed

Formal model: Stable paths [Griffin et al., 2002], routing algebras [Sobrinho, 2005].

5 / 21

The routing problem

𝑑

initial route

𝑏2𝑏1 𝑏3

𝑎

fail
ed

fail
ed

ℱ ∶ edge → bool
ℒ ∶ node → route

Formal model: Stable paths [Griffin et al., 2002], routing algebras [Sobrinho, 2005].

5 / 21

Topological symmetries: ∀∃-abstraction

𝑑

𝑎2𝑎1

𝑏1 𝑏2

𝑎3 𝑎4

𝑏3 𝑏4

̂𝑑

̂𝑎

̂𝑏

Concrete and abstract networks have similar connectivity.
Example:

blue abstract node has an edge to pink abstract node iff all
blue concrete nodes have an edge to some pink concrete node.

6 / 21

Topological symmetries: ∀∃-abstraction

𝑑

𝑎2𝑎1

𝑏1 𝑏2

𝑎3 𝑎4

𝑏3 𝑏4

̂𝑑

̂𝑎

̂𝑏

Concrete and abstract networks have similar connectivity.
Example:

blue abstract node has an edge to pink abstract node iff all
blue concrete nodes have an edge to some pink concrete node.

6 / 21

Topological symmetries: ∀∃-abstraction

𝑑

𝑎2𝑎1

𝑏1 𝑏2

𝑎3 𝑎4

𝑏3 𝑏4

̂𝑑

̂𝑎1

̂𝑏

̂𝑎234

Concrete and abstract networks have similar connectivity.
Example:

blue abstract node has an edge to pink abstract node iff all
blue concrete nodes have an edge to some pink concrete node.

6 / 21

Challenges with link failures I

𝑑

𝑎2𝑎1

𝑏1 𝑏2

𝑎3 𝑎4

𝑏3 𝑏4

̂𝑑

̂𝑎

̂𝑏

Concrete pink nodes have 2 disjoint paths, their abstraction
has only 1.

7 / 21

Challenges with link failures II

𝑑

𝑎2𝑎1

𝑏1 𝑏2

𝑎3 𝑎4

𝑏3 𝑏4

fail
ed

̂𝑑

̂𝑎

̂𝑏

𝒂𝟏 no longer has similar routing behavior with 𝒂𝟐, 𝒂𝟑 and 𝒂𝟒.
�̂� does not capture both behaviors.

8 / 21

Plausible abstractions

𝑑

𝑎2𝑎1

𝑏1 𝑏2

𝑎3 𝑎4

𝑏3 𝑏4

̂𝑑

̂𝑎

̂𝑏

Plausible abstraction: Nodes have two disjoint paths!
A necessary (but not sufficient) condition for 1-fault tolerance.

9 / 21

Plausible abstractions

𝑑

𝑎2𝑎1

𝑏1 𝑏2

𝑎3 𝑎4

𝑏3 𝑏4

̂𝑎13

̂𝑑

̂𝑏

̂𝑎24

Plausible abstraction: Nodes have two disjoint paths!
A necessary (but not sufficient) condition for 1-fault tolerance.

9 / 21

Approximating concrete networks

𝑑

𝑎2𝑎1

𝑏1 𝑏2

𝑎3 𝑎4

𝑏3 𝑏4

fail
ed

̂𝑎13

̂𝑑

̂𝑏

̂𝑎24

2
fai

lur
es

If a node has a route to the destination with k failures then it
has a route that is at least as good with k’ failures (k’ < k).
Abstract network over-approximates link failures.
Approximation is key to achieving compression.

10 / 21

Theory of approximation

Label approximation theorem
Given a network and its effective abstraction 𝑓 , for any solution
(ℒ, ℱ) of the concrete network there exists a solution (ℒ̂, ℱ̂) of
the abstract network, such that ℒ(𝑢) ⪯ ℒ̂(𝑓(𝑢)).

Holds for networks whose policy is monotonic and isotonic.
Monotonic: route ≺ 𝑓(route)
Isotonic: route1 ≺ route2 ⇒ 𝑓(route1) ≺ 𝑓(route2)

Reachability in abstraction implies reachability in the concrete.

11 / 21

Abstraction Algorithm

Abstract + verify

𝑠1 𝑠2 𝑠3 𝑠4

𝑏2𝑏1

𝑎1 𝑎2

𝑏3 𝑏4

𝑎3 𝑎4

𝑏5 𝑏6

𝑎5 𝑎6

𝑏7 𝑏8

𝑎7 𝑑

pink nodes do not announce routes to blue nodes.

(1) Can blue and pink nodes reach the destination when there is 1
link failure?

(2) Start from the smallest abstraction.
(3) REFINE to obtain a plausible abstraction:

|mincut(Graph,blue)| > 1 and |mincut(Graph,pink)| > 1.
(4) Run the verification procedure.

blue node cannot reach the destination!

12 / 21

Abstract + verify

𝑑

(1) Can blue and pink nodes reach the destination when there is 1
link failure?

(2) Start from the smallest abstraction.

(3) REFINE to obtain a plausible abstraction:
|mincut(Graph,blue)| > 1 and |mincut(Graph,pink)| > 1.

(4) Run the verification procedure.
blue node cannot reach the destination!

12 / 21

Abstract + verify

𝑑

(1) Can blue and pink nodes reach the destination when there is 1
link failure?

(2) Start from the smallest abstraction.
(3) REFINE to obtain a plausible abstraction:

|mincut(Graph,blue)| > 1 and |mincut(Graph,pink)| > 1.

(4) Run the verification procedure.
blue node cannot reach the destination!

12 / 21

Abstract + verify

𝑑

failed

(1) Can blue and pink nodes reach the destination when there is 1
link failure?

(2) Start from the smallest abstraction.
(3) REFINE to obtain a plausible abstraction:

|mincut(Graph,blue)| > 1 and |mincut(Graph,pink)| > 1.
(4) Run the verification procedure.

blue node cannot reach the destination!
12 / 21

Counterexample-guided refinement

𝑑

6 failures

Spurious counterexample ⇒ refine the abstraction.

13 / 21

Counterexample-guided refinement

𝑑

No progress!

14 / 21

Counterexample-guided refinement

𝑑
dis

abl
ed

disabled

Learned that pink nodes do not send routes to blue nodes.
Start over, REFINE until |mincut(Graph-disabled,blue)| > 1.

15 / 21

Counterexample-guided refinement

𝑑

Verifies reachability under any single link failure.
Carries over to the concrete network by soundness theorem!

16 / 21

The REFINE procedure

𝑑

𝑎2𝑎1

𝑏1 𝑏2

𝑎3 𝑎4

𝑏3 𝑏4

̂𝑎

̂𝑑

̂𝑏

Goal: Compute a plausible abstraction.

Split abstract nodes, but:
(1) Which nodes to split?

(2) How to split them?
(3) Must remain a valid ∀∃-abstraction.
(4) Need to make the right splitting choices.

17 / 21

The REFINE procedure

𝑑

𝑎2𝑎1

𝑏1 𝑏2

𝑎3 𝑎4

𝑏3 𝑏4

̂𝑎

̂𝑑

̂𝑏

Goal: Compute a plausible abstraction.
Split abstract nodes, but:
(1) Which nodes to split?

(2) How to split them?
(3) Must remain a valid ∀∃-abstraction.
(4) Need to make the right splitting choices.

17 / 21

The REFINE procedure

𝑑

𝑎2𝑎1

𝑏1 𝑏2

𝑎3 𝑎4

𝑏3 𝑏4

̂𝑑

̂𝑏

Goal: Compute a plausible abstraction.
Split abstract nodes, but:
(1) Which nodes to split?

(2) How to split them?
(3) Must remain a valid ∀∃-abstraction.
(4) Need to make the right splitting choices.

17 / 21

The REFINE procedure

𝑑

𝑎2𝑎1

𝑏1 𝑏2

𝑎3 𝑎4

𝑏3 𝑏4

̂𝑎12

̂𝑑

̂𝑏

̂𝑎34

Goal: Compute a plausible abstraction.
Split abstract nodes, but:
(1) Which nodes to split?
(2) How to split them?

(3) Must remain a valid ∀∃-abstraction.
(4) Need to make the right splitting choices.

17 / 21

The REFINE procedure

𝑑

𝑎2𝑎1

𝑏1 𝑏2

𝑎3 𝑎4

𝑏3 𝑏4

̂𝑎12

̂𝑑

̂𝑏12 ̂𝑏34

̂𝑎34

Goal: Compute a plausible abstraction.
Split abstract nodes, but:
(1) Which nodes to split?
(2) How to split them?
(3) Must remain a valid ∀∃-abstraction.

(4) Need to make the right splitting choices.

17 / 21

The REFINE procedure

𝑑

𝑎2𝑎1

𝑏1 𝑏2

𝑎3 𝑎4

𝑏3 𝑏4

̂𝑎13

̂𝑑

̂𝑏

̂𝑎24

Goal: Compute a plausible abstraction.
Split abstract nodes, but:
(1) Which nodes to split?
(2) How to split them?
(3) Must remain a valid ∀∃-abstraction.
(4) Need to make the right splitting choices.

17 / 21

The REFINE procedure

Computing the smallest plausible abstraction seems difficult!
Instead: Explore many plausible abstractions.
Guide the search by a set of heuristics.
Pick the smallest abstraction found.

18 / 21

Evaluation

Compression and Verification results

Topo V/E # Failed Abs V/E Abstraction Time SMT Time

FT20 500/8000
1 9/20 0.1 0.1
3 40/192 1.0 7.6
5 96/720 2.5 248

FT40
1 12/28 0.1 0.1

2000/64000 3 45/220 33 12.3
5 109/880 762.3 184.1

Evaulated on synthetic datacenter topologies.
Often reduced edges by more than 100x.
Abstraction time is insignificant.
SMT verification is possible.

19 / 21

Compression and Verification results

Topo V/E # Failed Abs V/E Abstraction Time SMT Time

FT20 500/8000
1 9/20 0.1 0.1
3 40/192 1.0 7.6
5 96/720 2.5 248

FT40
1 12/28 0.1 0.1

2000/64000 3 45/220 33 12.3
5 109/880 762.3 184.1

Evaulated on synthetic datacenter topologies.
Often reduced edges by more than 100x.
Abstraction time is insignificant.
SMT verification is possible.

19 / 21

Compression and Verification results

Topo V/E # Failed Abs V/E Abstraction Time SMT Time

FT20 500/8000
1 9/20 0.1 0.1
3 40/192 1.0 7.6
5 96/720 2.5 248

FT40
1 12/28 0.1 0.1

2000/64000 3 45/220 33 12.3
5 109/880 762.3 184.1

Evaulated on synthetic datacenter topologies.
Often reduced edges by more than 100x.
Abstraction time is insignificant.
SMT verification is possible.

19 / 21

Compression and Verification results

Topo V/E # Failed Abs V/E Abstraction Time SMT Time

FT20 500/8000
1 9/20 0.1 0.1
3 40/192 1.0 7.6
5 96/720 2.5 248

FT40
1 12/28 0.1 0.1

2000/64000 3 45/220 33 12.3
5 109/880 762.3 184.1

Evaulated on synthetic datacenter topologies.
Often reduced edges by more than 100x.
Abstraction time is insignificant.
SMT verification is possible.

19 / 21

Heuristics effectiveness

1 5 15 250

100

200

300

Search Breadth

Ab
st

ra
ct

io
n

siz
e

FT20 (500/8000), 5 link failures

Heuristics off All Heuristics

Random searches will not achieve high compression.
Heuristics make (costly) mistakes.

20 / 21

Conclusions

We enable verification of fault tolerance of large networks:

Based on a new theory of network compression.
Origami a tool that can handle networks out of reach to
current state-of-the-art tools.
Geared towards reachability only.
Some properties are not preserved by approximation.

21 / 21

Thank you!

	Network Compression Theory
	Abstraction Algorithm
	Evaluation
	Thank you!

