
Control plane compression for fault tolerance
Nick Giannarakis∗

PhD Candidate, ACM number: 4185942
Princeton University

nick.giannarakis@princeton.edu

Network Verification: A scaling challenge
Routing decisions in modern networks are often made by
distributed protocols such as BGP or OSPF. Each router in
the network executes one or more protocols in order to select
a route and communicate it to its neighbors. Protocols are
parameterized by a per-router configuration that affects their
execution, allowing network operators to enforce a variety
of end-to-end routing policies.

This flexibility however comes at a cost. Configuring each
router to achieve the desired behavior of the distributed
system is a difficult task[8, 10, 12]. And the problem is further
amplified by failures in the network; operators have to ensure
the sensible behavior of the network even when some link
or router stops working.
A wide range of network verification [3, 7, 13] and simu-

lation [5, 6, 11] techniques have been suggested in order to
automate reasoning about the behavior of a network. How-
ever, most of those techniques — especially the ones that
make soundness and/or completeness guarantees — don’t
scale to the size of real networks.

Background: Network compression
In order to tackle the large scale of modern networks, Beckett
et al. developed Bonsai [4], a theory of equivalence between
networks and an efficient algorithm that given a concrete net-
work constructs an equivalent abstract network of a smaller
size and thus amenable to verification.

Intuitively, abstract nodes can be seen as sets of concrete
nodes that share a similar forwarding behavior. For example
aggregation routers in a fat tree network [1] usually have
similar configurations and connectivity and hence will ex-
hibit similar forwarding behavior.
To formally specify the soundness and completeness of

the compression process, they model the semantics of a net-
work’s control plane based on the stable routing problem
(SRP). An SRP instance consists of the following compo-
nents:

1. a graph G = ⟨V ,E⟩ denoting the network topology.
2. a type A⊥ = A + ⊥ denoting the type of the routing

attributes exchanged. ⊥ means no route.
3. a destination d : V and its initial announcement ad : A.
4. a partial order ≺ ⊆ A⊥ ×A⊥ used to rank attributes.

∗This is joint work with Ryan Beckett, Ratul Mahajan and David Walker.
The author of this abstract is the sole student and leader of the project.

L (u ) =



ad u = d
⊥ attrsL (u ) = ∅
a ∈ min≺attrsL (u ) attrsL (u ) , ∅

attrsL (u ) = {a | (e, a) ∈ choicesL (u ) }
choicesL (u ) = {(e, a) | e = (u, v ), a = transfer e L (v ), a , ⊥}
fwdL (u ) = {e | a ≈ L (u ), (e, a) ∈ choicesL (u ) }
where a ≈ b ≜ a ⊀ b ∧ b ⊀ a

Figure 1. Valid solutions of an SRP

SRP = (G, A, ad, ≺, transfer) concrete SRP instance
ESRP = (Ĝ, Â, âd, ≺̂, Gtransfer) abstract SRP instance
f : V → V̂ topology abstraction
h : A→ Â route abstraction

L ∈ SRP ⇐⇒ L̂ ∈ESRP when:
(1)∀u . h (L (u )) = L̂ (f (u )) label-equivalence
(2) (û, v̂ ) ∈ f̂wd

L̂
(û ) ⇐⇒ fwd-equivalence(

∀u . f (u ) = û =⇒ ∃v . f (v ) = v̂ ∧ (u, v ) ∈ fwdL (u )
)

L ∈ SRP <: L̂ ∈ESRP when:
(1)∀u . h (L (u )) ⪯ L̂ (f (u )) label-approximate

Figure 2. Relation between concrete and abstract SRP.

5. a function transfer : E → A⊥ → A⊥ that denotes
how messages are processed across edges.

A solution to an SRP, is a labelling function L : V → A⊥
which represents the best available route for each node, as
captured by the constraints in fig. 1.
Label and forwarding equivalence (fig. 2) define the rela-

tionship between the concrete and abstract networks. While
forwarding equivalence preserves qualitative properties of
nodes such as reachability, path length, and absence of rout-
ing loops, it does not preserve quantitative properties such
as the number of neighbors of a node. Hence, it cannot be
directly used to reason about the network in the presence of
failures.

Compression in the presence of failures
One key invariant that Bonsai maintained is that all concrete
nodes in an abstract node have similar forwarding behavior.
In the presence of arbitrary (but bounded) failures this is no
longer true, as demonstrated by the example of fig. 3. This
invariant is simply too strong to be useful in the context of
fault tolerance, as failures break the symmetries between
nodes that Bonsai exploits to compress the network.

mailto:Ryan.Beckett@microsoft.com
mailto:ratul@intentionet.com
mailto:dpw@cs.princeton.edu


d

b2b1 b3

a

(a)

d̂

b̂

â

(b)

d

b2b1 b3

a

(c)

d̂

b̂1 b̂2

â

(d)

Figure 3.
(a) shows the concrete network after converging to a stable state. The direction of the arrows coincides with the direction of forwarding.
(b) shows a label and forwarding equivalent abstract network as computed by Bonsai.
(c) shows the state of (a) when the link between b1 and d has failed. (b) and this network are no longer label/forwarding equivalent.
(d) shows a new abstraction after splitting node b̂. This abstraction can correctly model the reachability of nodes in the concrete
network, under any possible single link failure.

Simplifying the problem. Label and forwarding equiva-
lence no longer hold, but we make a key observation:

If a node has a route to the destination under
any k link failures then it must also have one
under any k’ link failures for k ′ < k .

This intuition is formalized by establishing a weaker rela-
tion between the concrete and the abstract SRPs. In particular,
that the solutions of the concrete and the abstract network
are label-approximate (see fig. 2). Intuitively any concrete
node has a route that is at least as good (according to ≺) as the
route that the corresponding abstract node has. This relation
is sound when reasoning about properties such as reacha-
bility to the destination; if an abstract node can reach the
destination then so can the corresponding concrete nodes.

However, this begs the question: what if an abstract node
cannot reach the destination? Consider for instance the ab-
stract network of fig. 3b when at most one link in the net-
work can fail. If the link between nodes b̂ and d̂ fails then
no abstract node can reach the destination. The fact that the
solutions of the concrete (fig. 3a) and the abstract (fig. 3b) net-
works are label-approximate is not very useful; all concrete
nodes can reach the destination but the abstract network
provides no insight about this. Is label-approximate too weak
to be useful?

Refining the abstraction. The original abstraction com-
puted by Bonsai is not very useful to reason about fault
tolerance properties. Notice that an abstract link represents
multiple concrete links. Hence the failure of the link between
b̂ and d̂ in the original abstraction (fig. 3b) corresponds to
failure of the links ⟨b1,d⟩, ⟨b2,d⟩, ⟨b3,d⟩, a total of 3 link fail-
ures. As such it cannot constitute a real counterexample to a
property that considered at most one link failure. To rectify
this, we refine our original abstraction by splitting the ab-
stract node b̂ into two nodes b̂1, b̂2 to obtain the abstraction
of fig. 3d. This network is still a valid abstraction of the con-
crete network (alas a more fine-grain one); we can establish
that the solutions of the two networks are label-approximate.
Moreover, we can verify that any abstract node of the new

abstraction (fig. 3d) can reach the destination for any single
link failure and hence the same holds for any node in the
concrete network (fig. 3a).
The above motivate a simple algorithm to compute an

abstraction suitable for reasoning about reachability in the
presence of link failures. The new algorithm is based on the
idea of counterexample-guided refinement abstraction.

Evaluation and ongoing work
We found our key observation to hold for a class of networks
whose routing policies aremonotonic and isotonic. Intuitively
monotonicity dictates that attributes can only get worse
when transferred across edges (formally a ≺ transfer e a).
Isotonicity says that the transfer function is order preserving
(formally a ≺ b =⇒ transfer e a ≺ transfer e b). These
properties were previously used to prove convergence of
routing protocols [9]. We believe that networks such as the
ones deployed in modern data centers satisfy these proper-
ties.
We have currently implemented the original Bonsai ab-

straction, a refinement algorithm and an SMT-based verifica-
tion tool based on Minesweeper [2, 3] in OCaml. Preliminary
evaluation shows promise; while without compression veri-
fication for fault tolerance doesn’t scale beyond a few dozens
nodes and links, we can compress the network achieving a
high compression ratio that allows us to efficiently verify
reachability properties under one link failure for fat tree
networks [1] with hundred of nodes running BGP and OSPF.
Analyzing networks with more than one link failure is

challenging as they tend to require more refinement itera-
tions because there are multiple ways to refine an abstraction.
Suboptimal refinement choices can lead to a low compres-
sion rate and bad performance. We are currently exploring
smarter refinement algorithms.

Other interesting avenues to explore include relaxing the
monotonicity and isotonicity requirements, and studying
the set of properties that can be verified via this approach.



, ,

References
[1] Mohammad Al-Fares, Alexander Loukissas, and Amin Vahdat. 2008.

A Scalable, Commodity Data Center Network Architecture. In SIG-
COMM.

[2] Ryan Beckett. 2017. MineSweeper Source Code.
https://batfish.github.io/minesweeper. (2017).

[3] Ryan Beckett, Aarti Gupta, Ratul Mahajan, and David Walker. 2017.
A General Approach to Network Configuration Verification. In SIG-
COMM.

[4] Ryan Beckett, Aarti Gupta, Ratul Mahajan, and David Walker. 2018.
Control plane compression. In Proceedings of the 2018 Conference of the
ACM Special Interest Group on Data Communication. ACM, 476–489.

[5] Nick Feamster and Jennifer Rexford. 2007. Network-Wide Prediction
of BGP Routes. IEEE/ACM Trans. Networking 15, 2 (2007).

[6] Ari Fogel, Stanley Fung, Luis Pedrosa, Meg Walraed-Sullivan, Ramesh
Govindan, Ratul Mahajan, and Todd Millstein. 2015. A General Ap-
proach to Network Configuration Analysis. In NSDI.

[7] Aaron Gember-Jacobson, Raajay Viswanathan, Aditya Akella, and
Ratul Mahajan. 2016. Fast Control Plane Analysis Using an Abstract
Representation. In SIGCOMM.

[8] Joanne Godfrey. 2016. The Summer of Network
Misconfigurations. https://blog.algosec.com/2016/08/
business-outages-caused-misconfigurations-headline-news-summer.
html. (2016).

[9] Timothy G. Griffin and Joäo Luís Sobrinho. 2005. Metarouting. In
Proceedings of the 2005 Conference on Applications, Technologies, Archi-
tectures, and Protocols for Computer Communications (SIGCOMM ’05).
1–12.

[10] Ratul Mahajan, David Wetherall, and Tom Anderson. 2002. Under-
standing BGP Misconfiguration. In SIGCOMM.

[11] B. Quoitin and S. Uhlig. 2005. Modeling the Routing of an Autonomous
System with C-BGP. Netwrk. Mag. of Global Internetwkg. 19, 6 (No-
vember 2005), 12–19.

[12] Yevgenly Sverdlik. 2012. Microsoft: misconfigured
network device led to Azure outage. http://www.
datacenterdynamics.com/content-tracks/servers-storage/
microsoft-misconfigured-network-device-led-to-azure-outage/
68312.fullarticle. (2012).

[13] KonstantinWeitz, DougWoos, Emina Torlak, Michael D. Ernst, Arvind
Krishnamurthy, and Zachary Tatlock. 2016. Formal Semantics and
Automated Verification for the Border Gateway Protocol. In NetPL.

https://blog.algosec.com/2016/08/business-outages-caused-misconfigurations-headline-news-summer.html
https://blog.algosec.com/2016/08/business-outages-caused-misconfigurations-headline-news-summer.html
https://blog.algosec.com/2016/08/business-outages-caused-misconfigurations-headline-news-summer.html
http://www.datacenterdynamics.com/content-tracks/servers-storage/microsoft-misconfigured-network-device-led-to-azure-outage/68312.fullarticle
http://www.datacenterdynamics.com/content-tracks/servers-storage/microsoft-misconfigured-network-device-led-to-azure-outage/68312.fullarticle
http://www.datacenterdynamics.com/content-tracks/servers-storage/microsoft-misconfigured-network-device-led-to-azure-outage/68312.fullarticle
http://www.datacenterdynamics.com/content-tracks/servers-storage/microsoft-misconfigured-network-device-led-to-azure-outage/68312.fullarticle

	References

